Skip to content
$$ \def\bm#1{\boldsymbol{#1}} %%%%% NEW MATH DEFINITIONS %%%%% % % Mark sections of captions for referring to divisions of figures % \newcommand{\figleft}{{\em (Left)}} % \newcommand{\figcenter}{{\em (Center)}} % \newcommand{\figright}{{\em (Right)}} % \newcommand{\figtop}{{\em (Top)}} % \newcommand{\figbottom}{{\em (Bottom)}} % \newcommand{\captiona}{{\em (a)}} % \newcommand{\captionb}{{\em (b)}} % \newcommand{\captionc}{{\em (c)}} % \newcommand{\captiond}{{\em (d)}} % Highlight a newly defined term \newcommand{\newterm}[1]{{\bf #1}} % % Figure reference, lower-case. % \def\figref#1{figure~\ref{#1}} % % Figure reference, capital. For start of sentence % \def\Figref#1{Figure~\ref{#1}} % \def\twofigref#1#2{figures \ref{#1} and \ref{#2}} % \def\quadfigref#1#2#3#4{figures \ref{#1}, \ref{#2}, \ref{#3} and \ref{#4}} % % Section reference, lower-case. % \def\secref#1{section~\ref{#1}} % % Section reference, capital. % \def\Secref#1{Section~\ref{#1}} % % Reference to two sections. % \def\twosecrefs#1#2{sections \ref{#1} and \ref{#2}} % % Reference to three sections. % \def\secrefs#1#2#3{sections \ref{#1}, \ref{#2} and \ref{#3}} % % Reference to an equation, lower-case. % \def\eqref#1{equation~\ref{#1}} % % Reference to an equation, upper case % \def\Eqref#1{Equation~\ref{#1}} % % A raw reference to an equation---avoid using if possible % \def\plaineqref#1{\ref{#1}} % % Reference to a chapter, lower-case. % \def\chapref#1{chapter~\ref{#1}} % % Reference to an equation, upper case. % \def\Chapref#1{Chapter~\ref{#1}} % % Reference to a range of chapters % \def\rangechapref#1#2{chapters\ref{#1}--\ref{#2}} % % Reference to an algorithm, lower-case. % \def\algref#1{algorithm~\ref{#1}} % % Reference to an algorithm, upper case. % \def\Algref#1{Algorithm~\ref{#1}} % \def\twoalgref#1#2{algorithms \ref{#1} and \ref{#2}} % \def\Twoalgref#1#2{Algorithms \ref{#1} and \ref{#2}} % % Reference to a part, lower case % \def\partref#1{part~\ref{#1}} % % Reference to a part, upper case % \def\Partref#1{Part~\ref{#1}} % \def\twopartref#1#2{parts \ref{#1} and \ref{#2}} \def\ceil#1{\lceil #1 \rceil} \def\floor#1{\lfloor #1 \rfloor} \def\1{\bm{1}} \newcommand{\train}{\mathcal{D}} \newcommand{\valid}{\mathcal{D_{\mathrm{valid}}}} \newcommand{\test}{\mathcal{D_{\mathrm{test}}}} \def\eps{{\epsilon}} % Random variables \def\reta{{\textnormal{$\eta$}}} \def\ra{{\textnormal{a}}} \def\rb{{\textnormal{b}}} \def\rc{{\textnormal{c}}} \def\rd{{\textnormal{d}}} \def\re{{\textnormal{e}}} \def\rf{{\textnormal{f}}} \def\rg{{\textnormal{g}}} \def\rh{{\textnormal{h}}} \def\ri{{\textnormal{i}}} \def\rj{{\textnormal{j}}} \def\rk{{\textnormal{k}}} \def\rl{{\textnormal{l}}} % rm is already a command, just don't name any random variables m \def\rn{{\textnormal{n}}} \def\ro{{\textnormal{o}}} \def\rp{{\textnormal{p}}} \def\rq{{\textnormal{q}}} \def\rr{{\textnormal{r}}} \def\rs{{\textnormal{s}}} \def\rt{{\textnormal{t}}} \def\ru{{\textnormal{u}}} \def\rv{{\textnormal{v}}} \def\rw{{\textnormal{w}}} \def\rx{{\textnormal{x}}} \def\ry{{\textnormal{y}}} \def\rz{{\textnormal{z}}} % Random vectors \def\rvepsilon{{\mathbf{\epsilon}}} \def\rvtheta{{\mathbf{\theta}}} \def\rva{{\mathbf{a}}} \def\rvb{{\mathbf{b}}} \def\rvc{{\mathbf{c}}} \def\rvd{{\mathbf{d}}} \def\rve{{\mathbf{e}}} \def\rvf{{\mathbf{f}}} \def\rvg{{\mathbf{g}}} \def\rvh{{\mathbf{h}}} \def\rvi{{\mathbf{i}}} \def\rvj{{\mathbf{j}}} \def\rvk{{\mathbf{k}}} \def\rvl{{\mathbf{l}}} \def\rvm{{\mathbf{m}}} \def\rvn{{\mathbf{n}}} \def\rvo{{\mathbf{o}}} \def\rvp{{\mathbf{p}}} \def\rvq{{\mathbf{q}}} \def\rvr{{\mathbf{r}}} \def\rvs{{\mathbf{s}}} \def\rvt{{\mathbf{t}}} \def\rvu{{\mathbf{u}}} \def\rvv{{\mathbf{v}}} \def\rvw{{\mathbf{w}}} \def\rvx{{\mathbf{x}}} \def\rvy{{\mathbf{y}}} \def\rvz{{\mathbf{z}}} % Elements of random vectors \def\erva{{\textnormal{a}}} \def\ervb{{\textnormal{b}}} \def\ervc{{\textnormal{c}}} \def\ervd{{\textnormal{d}}} \def\erve{{\textnormal{e}}} \def\ervf{{\textnormal{f}}} \def\ervg{{\textnormal{g}}} \def\ervh{{\textnormal{h}}} \def\ervi{{\textnormal{i}}} \def\ervj{{\textnormal{j}}} \def\ervk{{\textnormal{k}}} \def\ervl{{\textnormal{l}}} \def\ervm{{\textnormal{m}}} \def\ervn{{\textnormal{n}}} \def\ervo{{\textnormal{o}}} \def\ervp{{\textnormal{p}}} \def\ervq{{\textnormal{q}}} \def\ervr{{\textnormal{r}}} \def\ervs{{\textnormal{s}}} \def\ervt{{\textnormal{t}}} \def\ervu{{\textnormal{u}}} \def\ervv{{\textnormal{v}}} \def\ervw{{\textnormal{w}}} \def\ervx{{\textnormal{x}}} \def\ervy{{\textnormal{y}}} \def\ervz{{\textnormal{z}}} % Random matrices \def\rmA{{\mathbf{A}}} \def\rmB{{\mathbf{B}}} \def\rmC{{\mathbf{C}}} \def\rmD{{\mathbf{D}}} \def\rmE{{\mathbf{E}}} \def\rmF{{\mathbf{F}}} \def\rmG{{\mathbf{G}}} \def\rmH{{\mathbf{H}}} \def\rmI{{\mathbf{I}}} \def\rmJ{{\mathbf{J}}} \def\rmK{{\mathbf{K}}} \def\rmL{{\mathbf{L}}} \def\rmM{{\mathbf{M}}} \def\rmN{{\mathbf{N}}} \def\rmO{{\mathbf{O}}} \def\rmP{{\mathbf{P}}} \def\rmQ{{\mathbf{Q}}} \def\rmR{{\mathbf{R}}} \def\rmS{{\mathbf{S}}} \def\rmT{{\mathbf{T}}} \def\rmU{{\mathbf{U}}} \def\rmV{{\mathbf{V}}} \def\rmW{{\mathbf{W}}} \def\rmX{{\mathbf{X}}} \def\rmY{{\mathbf{Y}}} \def\rmZ{{\mathbf{Z}}} % Elements of random matrices \def\ermA{{\textnormal{A}}} \def\ermB{{\textnormal{B}}} \def\ermC{{\textnormal{C}}} \def\ermD{{\textnormal{D}}} \def\ermE{{\textnormal{E}}} \def\ermF{{\textnormal{F}}} \def\ermG{{\textnormal{G}}} \def\ermH{{\textnormal{H}}} \def\ermI{{\textnormal{I}}} \def\ermJ{{\textnormal{J}}} \def\ermK{{\textnormal{K}}} \def\ermL{{\textnormal{L}}} \def\ermM{{\textnormal{M}}} \def\ermN{{\textnormal{N}}} \def\ermO{{\textnormal{O}}} \def\ermP{{\textnormal{P}}} \def\ermQ{{\textnormal{Q}}} \def\ermR{{\textnormal{R}}} \def\ermS{{\textnormal{S}}} \def\ermT{{\textnormal{T}}} \def\ermU{{\textnormal{U}}} \def\ermV{{\textnormal{V}}} \def\ermW{{\textnormal{W}}} \def\ermX{{\textnormal{X}}} \def\ermY{{\textnormal{Y}}} \def\ermZ{{\textnormal{Z}}} % Vectors \def\vzero{{\bm{0}}} \def\vone{{\bm{1}}} \def\vmu{{\bm{\mu}}} \def\vtheta{{\bm{\theta}}} \def\va{{\bm{a}}} \def\vb{{\bm{b}}} \def\vc{{\bm{c}}} \def\vd{{\bm{d}}} \def\ve{{\bm{e}}} \def\vf{{\bm{f}}} \def\vg{{\bm{g}}} \def\vh{{\bm{h}}} \def\vi{{\bm{i}}} \def\vj{{\bm{j}}} \def\vk{{\bm{k}}} \def\vl{{\bm{l}}} \def\vm{{\bm{m}}} \def\vn{{\bm{n}}} \def\vo{{\bm{o}}} \def\vp{{\bm{p}}} \def\vq{{\bm{q}}} \def\vr{{\bm{r}}} \def\vs{{\bm{s}}} \def\vt{{\bm{t}}} \def\vu{{\bm{u}}} \def\vv{{\bm{v}}} \def\vw{{\bm{w}}} \def\vx{{\bm{x}}} \def\vy{{\bm{y}}} \def\vz{{\bm{z}}} % Elements of vectors \def\evalpha{{\alpha}} \def\evbeta{{\beta}} \def\evepsilon{{\epsilon}} \def\evlambda{{\lambda}} \def\evomega{{\omega}} \def\evmu{{\mu}} \def\evpsi{{\psi}} \def\evsigma{{\sigma}} \def\evtheta{{\theta}} \def\eva{{a}} \def\evb{{b}} \def\evc{{c}} \def\evd{{d}} \def\eve{{e}} \def\evf{{f}} \def\evg{{g}} \def\evh{{h}} \def\evi{{i}} \def\evj{{j}} \def\evk{{k}} \def\evl{{l}} \def\evm{{m}} \def\evn{{n}} \def\evo{{o}} \def\evp{{p}} \def\evq{{q}} \def\evr{{r}} \def\evs{{s}} \def\evt{{t}} \def\evu{{u}} \def\evv{{v}} \def\evw{{w}} \def\evx{{x}} \def\evy{{y}} \def\evz{{z}} % Matrix \def\mA{{\bm{A}}} \def\mB{{\bm{B}}} \def\mC{{\bm{C}}} \def\mD{{\bm{D}}} \def\mE{{\bm{E}}} \def\mF{{\bm{F}}} \def\mG{{\bm{G}}} \def\mH{{\bm{H}}} \def\mI{{\bm{I}}} \def\mJ{{\bm{J}}} \def\mK{{\bm{K}}} \def\mL{{\bm{L}}} \def\mM{{\bm{M}}} \def\mN{{\bm{N}}} \def\mO{{\bm{O}}} \def\mP{{\bm{P}}} \def\mQ{{\bm{Q}}} \def\mR{{\bm{R}}} \def\mS{{\bm{S}}} \def\mT{{\bm{T}}} \def\mU{{\bm{U}}} \def\mV{{\bm{V}}} \def\mW{{\bm{W}}} \def\mX{{\bm{X}}} \def\mY{{\bm{Y}}} \def\mZ{{\bm{Z}}} \def\mBeta{{\bm{\beta}}} \def\mPhi{{\bm{\Phi}}} \def\mLambda{{\bm{\Lambda}}} \def\mSigma{{\bm{\Sigma}}} % Tensor \newcommand{\tens}[1]{\mathsf{#1}} \def\tA{{\tens{A}}} \def\tB{{\tens{B}}} \def\tC{{\tens{C}}} \def\tD{{\tens{D}}} \def\tE{{\tens{E}}} \def\tF{{\tens{F}}} \def\tG{{\tens{G}}} \def\tH{{\tens{H}}} \def\tI{{\tens{I}}} \def\tJ{{\tens{J}}} \def\tK{{\tens{K}}} \def\tL{{\tens{L}}} \def\tM{{\tens{M}}} \def\tN{{\tens{N}}} \def\tO{{\tens{O}}} \def\tP{{\tens{P}}} \def\tQ{{\tens{Q}}} \def\tR{{\tens{R}}} \def\tS{{\tens{S}}} \def\tT{{\tens{T}}} \def\tU{{\tens{U}}} \def\tV{{\tens{V}}} \def\tW{{\tens{W}}} \def\tX{{\tens{X}}} \def\tY{{\tens{Y}}} \def\tZ{{\tens{Z}}} % Graph \def\gA{{\mathcal{A}}} \def\gB{{\mathcal{B}}} \def\gC{{\mathcal{C}}} \def\gD{{\mathcal{D}}} \def\gE{{\mathcal{E}}} \def\gF{{\mathcal{F}}} \def\gG{{\mathcal{G}}} \def\gH{{\mathcal{H}}} \def\gI{{\mathcal{I}}} \def\gJ{{\mathcal{J}}} \def\gK{{\mathcal{K}}} \def\gL{{\mathcal{L}}} \def\gM{{\mathcal{M}}} \def\gN{{\mathcal{N}}} \def\gO{{\mathcal{O}}} \def\gP{{\mathcal{P}}} \def\gQ{{\mathcal{Q}}} \def\gR{{\mathcal{R}}} \def\gS{{\mathcal{S}}} \def\gT{{\mathcal{T}}} \def\gU{{\mathcal{U}}} \def\gV{{\mathcal{V}}} \def\gW{{\mathcal{W}}} \def\gX{{\mathcal{X}}} \def\gY{{\mathcal{Y}}} \def\gZ{{\mathcal{Z}}} % Sets \def\sA{{\mathbb{A}}} \def\sB{{\mathbb{B}}} \def\sC{{\mathbb{C}}} \def\sD{{\mathbb{D}}} % Don't use a set called E, because this would be the same as our symbol % for expectation. \def\sF{{\mathbb{F}}} \def\sG{{\mathbb{G}}} \def\sH{{\mathbb{H}}} \def\sI{{\mathbb{I}}} \def\sJ{{\mathbb{J}}} \def\sK{{\mathbb{K}}} \def\sL{{\mathbb{L}}} \def\sM{{\mathbb{M}}} \def\sN{{\mathbb{N}}} \def\sO{{\mathbb{O}}} \def\sP{{\mathbb{P}}} \def\sQ{{\mathbb{Q}}} \def\sR{{\mathbb{R}}} \def\sS{{\mathbb{S}}} \def\sT{{\mathbb{T}}} \def\sU{{\mathbb{U}}} \def\sV{{\mathbb{V}}} \def\sW{{\mathbb{W}}} \def\sX{{\mathbb{X}}} \def\sY{{\mathbb{Y}}} \def\sZ{{\mathbb{Z}}} % Entries of a matrix \def\emLambda{{\Lambda}} \def\emA{{A}} \def\emB{{B}} \def\emC{{C}} \def\emD{{D}} \def\emE{{E}} \def\emF{{F}} \def\emG{{G}} \def\emH{{H}} \def\emI{{I}} \def\emJ{{J}} \def\emK{{K}} \def\emL{{L}} \def\emM{{M}} \def\emN{{N}} \def\emO{{O}} \def\emP{{P}} \def\emQ{{Q}} \def\emR{{R}} \def\emS{{S}} \def\emT{{T}} \def\emU{{U}} \def\emV{{V}} \def\emW{{W}} \def\emX{{X}} \def\emY{{Y}} \def\emZ{{Z}} \def\emSigma{{\Sigma}} % entries of a tensor % Same font as tensor, without \bm wrapper \newcommand{\etens}[1]{\mathsfit{#1}} \def\etLambda{{\etens{\Lambda}}} \def\etA{{\etens{A}}} \def\etB{{\etens{B}}} \def\etC{{\etens{C}}} \def\etD{{\etens{D}}} \def\etE{{\etens{E}}} \def\etF{{\etens{F}}} \def\etG{{\etens{G}}} \def\etH{{\etens{H}}} \def\etI{{\etens{I}}} \def\etJ{{\etens{J}}} \def\etK{{\etens{K}}} \def\etL{{\etens{L}}} \def\etM{{\etens{M}}} \def\etN{{\etens{N}}} \def\etO{{\etens{O}}} \def\etP{{\etens{P}}} \def\etQ{{\etens{Q}}} \def\etR{{\etens{R}}} \def\etS{{\etens{S}}} \def\etT{{\etens{T}}} \def\etU{{\etens{U}}} \def\etV{{\etens{V}}} \def\etW{{\etens{W}}} \def\etX{{\etens{X}}} \def\etY{{\etens{Y}}} \def\etZ{{\etens{Z}}} % The true underlying data generating distribution \newcommand{\pdata}{p_{\rm{data}}} % The empirical distribution defined by the training set \newcommand{\ptrain}{\hat{p}_{\rm{data}}} \newcommand{\Ptrain}{\hat{P}_{\rm{data}}} % The model distribution \newcommand{\pmodel}{p_{\rm{model}}} \newcommand{\Pmodel}{P_{\rm{model}}} \newcommand{\ptildemodel}{\tilde{p}_{\rm{model}}} % Stochastic autoencoder distributions \newcommand{\pencode}{p_{\rm{encoder}}} \newcommand{\pdecode}{p_{\rm{decoder}}} \newcommand{\precons}{p_{\rm{reconstruct}}} \newcommand{\laplace}{\mathrm{Laplace}} % Laplace distribution \newcommand{\E}{\mathbb{E}} \newcommand{\Ls}{\mathcal{L}} \newcommand{\R}{\mathbb{R}} \newcommand{\emp}{\tilde{p}} \newcommand{\lr}{\alpha} \newcommand{\reg}{\lambda} \newcommand{\rect}{\mathrm{rectifier}} \newcommand{\softmax}{\mathrm{softmax}} \newcommand{\sigmoid}{\sigma} \newcommand{\softplus}{\zeta} \newcommand{\KL}{D_{\mathrm{KL}}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\standarderror}{\mathrm{SE}} \newcommand{\Cov}{\mathrm{Cov}} % Wolfram Mathworld says $L^2$ is for function spaces and $\ell^2$ is for vectors % But then they seem to use $L^2$ for vectors throughout the site, and so does % wikipedia. \newcommand{\normlzero}{L^0} \newcommand{\normlone}{L^1} \newcommand{\normltwo}{L^2} \newcommand{\normlp}{L^p} \newcommand{\normmax}{L^\infty} \newcommand{\parents}{Pa} % See usage in notation.tex. Chosen to match Daphne's book. \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\Tr}{Tr} \let\ab\allowbreak $$

Deep Q-Network (DQN)

Goal: Scale Q-Learning to high-dimensional state spaces.

Contribution: Achieved professional human performance across a set of 49 games (the Atari Learning Environment (ALE)), receiving only the pixels and the game score as inputs, using the same algorithm, network architecture, and hyperparameters across all games.

Prerequisites

  • Markov Decision Process (MDP)
  • Q-Learning
  • Neural Network (NN)
  • Convolution Neural Network (CNN)

Concept

  1. Stacked frames as MDP state

    • If we define the state as a single Atari game frame, the problem becomes a POMDP instead of a MDP (e.g., the ball velocity in Pong cannot be inferred by a single frame).
    • DQN defines the state as stacked frames of 4, which makes most Atari games a MDP (empirically).
  2. Approximate the Q-value table with CNN

    • Before the introduction of DQN, Q-Learning cannot handle high-dimensional state spaces well due to the use of the Q-value table.
    • Function approximation allows storing the Q-values under limited memory and enables generalization.
  3. Model \(Q(\vs,\cdot)\) instead of \(Q(\vs,\va)\)

    • Allows all actions' Q-value to be obtained by a single forward pass of the CNN instead of \(\vert\sA\vert\) forward passes, making the Q-Learning update more efficient. (the Bellman optimality operator requires a max across all actions, i.e., \(\max_{\va'}Q(\vs',\va')\))
  4. Experience Replay

    • Neural networks prefers i.i.d. (independent and identically distributed) data.
    • In Atari games, the data collected is highly correlated due to the game mechanics (e.g., game resets, common trajectories); the data distribution is also non-stationary due to the change of policy.
    • The non-i.i.d. issue may be alleviated by sampling a mini-batch from a pool of previous transitions (experience buffer).
  5. Target Network

    • The target in supervised learning is defined based on the ground truth.
    • The target of Q-Learning is defined based on its own output (i.e., bootstrapping). Such approximate dynamic programming (ADP) techniques may cause unstability when using NN approximations.
    • The update can be stabilized by an additional target network obtained by copying and freezing the weights of the policy network that only updates once a while (preventing the target loss landscape from changing too fast).
  6. Nature DQN vs. NIPS DQN

    • The concept of target network is introduced in the Nature paper but not in the NIPS paper.
    • Some old papers emphasize the use of target network by the term Nature DQN (contrasting to (NIPS) DQN which does not use target networks).
    • Currently, the DQN term generally refers to Nature DQN. (the one with target network)

Official Resources

Community Resources

Comments